证明:$(1)$∵$AB = AE,$$D$为线段$BE$的中点,∴$AD\perp BC$
∴在$\triangle ADC$中,$∠C+∠DAC = 90°$
∵$∠BAC = 90°,$∴$∠BAD+∠DAC = 90°$
∴$∠C=∠BAD$
$(2) $∵$AF//BC,$∴$∠F AE=∠AEB$
∵$AB = AE,$∴$∠B=∠AEB$
∴$∠B=∠F AE$
∵$EF\perp AE,$∴$∠AEF = 90°,$∴$∠AEF=∠BAC$
在$\triangle ABC$和$\triangle EAF {中},$
$\begin {cases}∠BAC=∠AEF\\AB = EA\\∠B=∠F AE\end {cases}$
∴$\triangle ABC≌\triangle EAF(AS A)$
∴$AC = EF$