电子课本网 第20页

第20页

信息发布者:
A
C
C
$66^{\circ}$
3
解:(1)$\triangle ABF\cong\triangle DCE$
(2)对应边:$AB$与$DC,$$AF$与$DE,$$BF$与$CE;$
对应角:$\angle A$与$\angle D,$$\angle B$与$\angle C,$$\angle AFB$与$\angle DEC$
解:$\because \triangle ABM\cong\triangle ACN,$$\angle B = 20^{\circ},$$\angle CAN = 30^{\circ},$
$\therefore \angle BAM=\angle CAN = 30^{\circ},$$\angle B=\angle C = 20^{\circ}。$
又$\because \angle B+\angle C+\angle BAC = 180^{\circ},$
$\therefore \angle BAC = 180^{\circ}-\angle B-\angle C = 180^{\circ}-20^{\circ}-20^{\circ}=140^{\circ}。$
$\therefore \angle MAN=\angle BAC-\angle BAM-\angle CAN = 140^{\circ}-30^{\circ}-30^{\circ}=80^{\circ}$