电子课本网 第21页

第21页

信息发布者:
B
$(3,-2)$
$30^{\circ}$
$35^{\circ}$
解:(1)$\because \triangle BAD\cong\triangle ACE,$
$\therefore BD = AE,$$AD = CE。$
又$\because A,$$D,$$E$三点在同一条直线上,
$\therefore AE = DE + AD。$
$\therefore BD = DE + CE$
(2)$\because \triangle BAD\cong\triangle ACE,$
$\therefore AB = CA,$$\angle BAD=\angle ACE。$
$\because \angle E = 90^{\circ},$
$\therefore \angle CAE+\angle ACE = 90^{\circ}。$
$\therefore \angle CAE+\angle BAD = 90^{\circ},$即$\angle BAC = 90^{\circ}。$
$\therefore \triangle ABC$是等腰直角三角形
(3)答案不唯一,如将$\triangle BAD$先绕点$D$按顺时针方向旋转$90^{\circ},$再向下平移,即可与$\triangle ACE$完全重合
解:(1)$\because \triangle CAD\cong\triangle CED,$$\triangle CEF\cong\triangle CAD,$
$\therefore \angle ACD=\angle ECD,$$\angle ECF=\angle ACD。$
$\therefore \angle ACD=\angle ECD=\angle ECF。$
$\because \angle ACD+\angle ECD+\angle ECF=\angle ACB = 90^{\circ},$
$\therefore \angle ACD=\angle ECD=\angle ECF = 30^{\circ}。$
又$\because \triangle CEF\cong\triangle BEF,$
$\therefore \angle B=\angle ECF = 30^{\circ}。$
$\therefore \angle A = 90^{\circ}-\angle B = 60^{\circ}$
(2)$AC// EF$
理由:$\because \triangle CEF\cong\triangle BEF,$
$\therefore \angle CFE=\angle BFE。$
又$\because \angle BFE+\angle CFE = 180^{\circ},$
$\therefore \angle BFE = 90^{\circ}。$
$\therefore \angle ACB=\angle BFE。$
$\therefore AC// EF$