解:(1)$\because \triangle CAD\cong\triangle CED,$$\triangle CEF\cong\triangle CAD,$
$\therefore \angle ACD=\angle ECD,$$\angle ECF=\angle ACD。$
$\therefore \angle ACD=\angle ECD=\angle ECF。$
$\because \angle ACD+\angle ECD+\angle ECF=\angle ACB = 90^{\circ},$
$\therefore \angle ACD=\angle ECD=\angle ECF = 30^{\circ}。$
又$\because \triangle CEF\cong\triangle BEF,$
$\therefore \angle B=\angle ECF = 30^{\circ}。$
$\therefore \angle A = 90^{\circ}-\angle B = 60^{\circ}$
(2)$AC// EF$
理由:$\because \triangle CEF\cong\triangle BEF,$
$\therefore \angle CFE=\angle BFE。$
又$\because \angle BFE+\angle CFE = 180^{\circ},$
$\therefore \angle BFE = 90^{\circ}。$
$\therefore \angle ACB=\angle BFE。$
$\therefore AC// EF$