电子课本网 第25页

第25页

信息发布者:
B
7
$(1,4)$
(1)$\triangle ACD\cong\triangle CBE$
证明:$\because \angle ACB = 90^{\circ},$
$\therefore \angle ACD + \angle ECB = 90^{\circ}.$
$\because AD\perp CE,$$BE\perp CE,$
$\therefore \angle ADC = \angle CEB = 90^{\circ}.$
$\therefore \angle ACD + \angle DAC = 90^{\circ},$
$\therefore \angle ECB = \angle DAC.$
在$\triangle ACD$和$\triangle CBE$中,
$\begin{cases}\angle ADC = \angle CEB \\\angle DAC = \angle ECB \\AC = CB\end{cases}$
$\therefore \triangle ACD\cong\triangle CBE$(AAS)
(2)$\because \triangle ACD\cong\triangle CBE,$
$\therefore CD = BE = 3,$$AD = CE.$
又$\because CE = CD + DE = 3 + 5 = 8,$
$\therefore AD = 8$
(1)证明:在$\triangle ABE$和$\triangle ACD$中,
$\begin{cases}\angle B = \angle C \\AB = AC \\\angle BAE = \angle CAD\end{cases}$
$\therefore \triangle ABE\cong\triangle ACD$(ASA).
$\therefore AE = AD.$
$\therefore AB - AD = AC - AE,$即$BD = CE.$
(2)证明:在$\triangle BDF$和$\triangle CEF$中,
$\begin{cases}\angle B = \angle C \\\angle BFD = \angle CFE \\BD = CE\end{cases}$
$\therefore \triangle BDF\cong\triangle CEF$(AAS).
(3)证明:由(2),知$\triangle BDF\cong\triangle CEF,$$\therefore BF = CF.$
在$\triangle ABF$和$\triangle ACF$中,
$\begin{cases}AB = AC \\\angle B = \angle C \\BF = CF\end{cases}$
$\therefore \triangle ABF\cong\triangle ACF$(SAS).
$\therefore \angle BAF = \angle CAF,$即$AF$平分$\angle BAC.$