(1)证明:在$\triangle ABE$和$\triangle ACD$中,
$\begin{cases}\angle B = \angle C \\AB = AC \\\angle BAE = \angle CAD\end{cases}$
$\therefore \triangle ABE\cong\triangle ACD$(ASA).
$\therefore AE = AD.$
$\therefore AB - AD = AC - AE,$即$BD = CE.$
(2)证明:在$\triangle BDF$和$\triangle CEF$中,
$\begin{cases}\angle B = \angle C \\\angle BFD = \angle CFE \\BD = CE\end{cases}$
$\therefore \triangle BDF\cong\triangle CEF$(AAS).
(3)证明:由(2),知$\triangle BDF\cong\triangle CEF,$$\therefore BF = CF.$
在$\triangle ABF$和$\triangle ACF$中,
$\begin{cases}AB = AC \\\angle B = \angle C \\BF = CF\end{cases}$
$\therefore \triangle ABF\cong\triangle ACF$(SAS).
$\therefore \angle BAF = \angle CAF,$即$AF$平分$\angle BAC.$