证明:$\because AD\perp BC,$$\therefore \angle ADB = 90^{\circ},$$\therefore \angle B + \angle EAF = 90^{\circ}.$
$\because CE\perp AB,$$\therefore \angle AEF = \angle CEB = 90^{\circ},$$\therefore \angle B + \angle ECB = 90^{\circ}.$
$\therefore \angle EAF = \angle ECB.$
在$\triangle AEF$和$\triangle CEB$中,
$\begin{cases}\angle AEF = \angle CEB \\AE = CE \\\angle EAF = \angle ECB\end{cases}$
$\therefore \triangle AEF\cong\triangle CEB$(ASA)