电子课本网 第24页

第24页

信息发布者:
C
B
C
$AB = DE$
$\angle ACB = \angle DFE$
$\angle B = \angle E$
证明:$\because AC = BD,$
$\therefore AC + BC = BD + BC,$即$AB = CD.$
在$\triangle ABF$和$\triangle CDE$中,
$\begin{cases}\angle A = \angle DCE \\\angle F = \angle E \\AB = CD\end{cases}$
$\therefore \triangle ABF\cong\triangle CDE$(AAS)
证明:$\because AD\perp BC,$$\therefore \angle ADB = 90^{\circ},$$\therefore \angle B + \angle EAF = 90^{\circ}.$
$\because CE\perp AB,$$\therefore \angle AEF = \angle CEB = 90^{\circ},$$\therefore \angle B + \angle ECB = 90^{\circ}.$
$\therefore \angle EAF = \angle ECB.$
在$\triangle AEF$和$\triangle CEB$中,
$\begin{cases}\angle AEF = \angle CEB \\AE = CE \\\angle EAF = \angle ECB\end{cases}$
$\therefore \triangle AEF\cong\triangle CEB$(ASA)