电子课本网 第39页

第39页

信息发布者:
$100^{\circ}$
B
答案不唯一,如$AD = CE$
$(4,1)$
证明:$\because\angle1 = \angle2,$$\angle3 = \angle4,$
$\therefore\angle CAB=\angle DBA。$
在$\triangle CAB$和$\triangle DBA$中,
$\begin{cases}\angle CAB=\angle DBA \\AB = BA \\\angle2=\angle1\end{cases}$
$\therefore\triangle CAB\cong\triangle DBA(ASA)。$
$\therefore AC = BD。$
解:(1)证明:$\because\angle BAC=\angle EAF,$
$\therefore\angle BAC+\angle CAE=\angle EAF+\angle CAE,$即$\angle BAE=\angle CAF。$
在$\triangle BAE$和$\triangle CAF$中,
$\begin{cases}AB = AC \\\angle BAE=\angle CAF \\AE = AF\end{cases}$
$\therefore\triangle BAE\cong\triangle CAF(SAS)。$
$\therefore BE = CF。$
(2)$\because\triangle BAE\cong\triangle CAF,$
$\therefore\angle EBA=\angle FCA,$即$\angle DBA=\angle OCD。$
$\because\angle BDA=\angle ODC,$
$\therefore\angle BAD=\angle COD。$
$\because\angle BAC = 70^{\circ},$即$\angle BAD = 70^{\circ},$
$\therefore\angle COD = 70^{\circ},$即$\angle BOC = 70^{\circ}。$