(1)证明:如图,过点$E$作$EG\perp BF,$交$BF$的延长线于点$G,$
则$\angle CGE=\angle ABC = 90^{\circ}。$
因为$\angle ACE = 90^{\circ},$所以$\angle ACB+\angle ECG = 90^{\circ}。$
因为$\angle ACB+\angle CAB = 90^{\circ},$所以$\angle ECG=\angle CAB。$
在$\triangle ABC$和$\triangle CGE$中,
$\begin{cases}\angle CAB=\angle ECG \\\angle ABC=\angle CGE \\AC = CE\end{cases}$
所以$\triangle ABC\cong\triangle CGE(AAS),$所以$BC = GE。$
因为$BC = CD,$所以$GE = CD。$
因为$\angle BCD = 90^{\circ},$所以$\angle DCF = 90^{\circ}=\angle EGF。$
在$\triangle CFD$和$\triangle GFE$中,
$\begin{cases}\angle DCF=\angle EGF \\\angle CFD=\angle GFE \\CD = GE\end{cases}$
所以$\triangle CFD\cong\triangle GFE(AAS),$所以$EF = DF。$
(2)因为$\triangle CFD\cong\triangle GFE,$所以$S_{\triangle CFD}=S_{\triangle GFE}。$
所以$S_{\triangle CFD}+S_{\triangle CFE}=S_{\triangle GFE}+S_{\triangle CFE},$即$S_{\triangle DCE}=S_{\triangle CGE}。$
因为$\triangle ABC\cong\triangle CGE,$所以$S_{\triangle ABC}=S_{\triangle CGE}。$
所以$S_{\triangle ABC}=S_{\triangle DCE}。$