解:(1)$\because \angle BAC = 90^{\circ},$$AB = AC,$
$\therefore \angle B=\angle C=\frac{1}{2}(180^{\circ}-\angle BAC)=45^{\circ}。$
又$\because \angle BAD = 30^{\circ},$$\therefore \angle ADC=\angle B+\angle BAD=45^{\circ}+30^{\circ}=75^{\circ}。$
$\because \angle DAC=\angle BAC-\angle BAD=90^{\circ}-30^{\circ}=60^{\circ},$且$AD = AE,$
$\therefore \angle ADE=\angle AED=\frac{1}{2}(180^{\circ}-\angle DAC)=60^{\circ}。$
$\therefore \angle EDC=\angle ADC-\angle ADE=75^{\circ}-60^{\circ}=15^{\circ}$
(2)$\because \angle BAC=\alpha,$$\angle BAD = 30^{\circ},$$\therefore \angle DAC=\alpha - 30^{\circ}。$
$\because AB = AC,$$\therefore \angle B=\angle C=\frac{1}{2}(180^{\circ}-\angle BAC)=90^{\circ}-\frac{1}{2}\alpha。$
$\therefore \angle ADC=\angle B+\angle BAD=120^{\circ}-\frac{1}{2}\alpha。$
$\because AD = AE,$$\therefore \angle ADE=\angle AED=\frac{1}{2}(180^{\circ}-\angle DAC)=105^{\circ}-\frac{1}{2}\alpha。$
$\therefore \angle EDC=\angle ADC-\angle ADE=(120^{\circ}-\frac{1}{2}\alpha)-(105^{\circ}-\frac{1}{2}\alpha)=15^{\circ}$
(3)$\angle EDC=\frac{1}{2}\angle BAD$