电子课本网 第52页

第52页

信息发布者:
B
C
6
$\frac{3}{2}$
解:如图,作线段$AB = a,$作线段$AB$的垂直平分线$MN,$与$AB$交于点$D,$在$MN$上取点$C,$使$DC = b.$ 连接$AC,$$BC,$则$\triangle ABC$即为所求作的等腰三角形。
证明:$\because \angle ACB = 90^{\circ},$$CD\perp AB,$
$\therefore \angle CBF+\angle CFB=\angle DBE+\angle DEB = 90^{\circ}.$
$\because BF$平分$\angle ABC,$
$\therefore \angle CBF = \angle DBE.$
$\therefore \angle CFB = \angle DEB.$
又$\because \angle FEC = \angle DEB,$
$\therefore \angle CFB = \angle FEC.$
$\therefore CE = CF$