电子课本网 第62页

第62页

信息发布者:
B
11
$40^{\circ}$
解:(1)如图,BC的垂直平分线l,点E,F,G即为所求 

(2)如图,设BE与AM交于点D. $\because$ EF是BC的垂直平分线,$\therefore$ EB = EC,$\angle GFM = 90^{\circ}.$ $\therefore$ $\angle EBC = \angle C.$ $\because$ $\angle AGE = \angle C,$$\therefore$ $\angle EBC = \angle AGE.$ $\because$ $\angle GMF = \angle BMD,$$\therefore$ $\angle BDM = \angle GFM = 90^{\circ}.$ 
$\therefore$ AG $\perp$ BE. $\therefore$ $\angle BDA = \angle EDA = 90^{\circ}.$ 
$\because$ AM平分$\angle BAC,$$\therefore$ $\angle BAD = \angle EAD.$ 
$\because$ AD = AD,$\therefore$ $\triangle ABD \cong \triangle AED.$ 
$\therefore$ BD = ED. $\therefore$ AG垂直平分BE
C
解:(1)$\because$ AD$//$BE,$\therefore$ $\angle ADB = \angle DBC.$
$\because$ BD平分$\angle ABC,$$\therefore$ $\angle ABD = \angle DBC.$
$\therefore$ $\angle ABD = \angle ADB.$ $\therefore$ AB = AD
(2)$\because$ AD$//$BE,$\therefore$ $\angle ADC = \angle DCE.$
由(1),知AB = AD,
又$\because$ AB = AC,$\therefore$ AC = AD.
$\therefore$ $\angle ACD = \angle ADC.$ $\therefore$ $\angle ACD = \angle DCE.$
$\therefore$ CD平分$\angle ACE$