解:(1)如图①,连接AD.
$\because$ AB = AC,$\angle BAC = 90^{\circ},$D为BC的中点,
$\therefore$ AD $\perp$ BC,$\angle B = \angle C = 45^{\circ},$$\angle BAD = \angle DAC = 45^{\circ}.$ $\therefore$ $\angle BDA = 90^{\circ},$$\angle B = \angle BAD = \angle DAC.$
$\therefore$ BD = AD. 又$\because$ BE = AF,
$\therefore$ $\triangle BDE \cong \triangle ADF.$
$\therefore$ ED = FD,$\angle BDE = \angle ADF.$
$\therefore$ $\angle EDF = \angle EDA + \angle ADF = \angle EDA + \angle BDE = \angle BDA = 90^{\circ}.$
$\therefore$ $\triangle DEF$为等腰直角三角形
(2)$\triangle DEF$仍为等腰直角三角形 理由:如图②,
连接AD.
$\because$ AB = AC,$\angle BAC = 90^{\circ},$D为BC的中点,
$\therefore$ AD $\perp$ BC,$\angle DAC = \angle BAD = \angle ABD = 45^{\circ}.$
$\therefore$ $\angle BDA = 90^{\circ},$AD = BD,$\angle DAF = \angle DBE = 135^{\circ}.$
又$\because$ AF = BE,$\therefore$ $\triangle DAF \cong \triangle DBE.$
$\therefore$ FD = ED,$\angle ADF = \angle BDE.$
$\therefore$ $\angle EDF = \angle BDE + \angle FDB = \angle ADF+\angle FDB = \angle BDA = 90^{\circ}.$
$\therefore$ $\triangle DEF$仍为等腰直角三角形