电子课本网 第65页

第65页

信息发布者:
B
D
10
B
$\frac{48}{5}$
解:如图,作点$M$关于$OA$的对称点$C,$点$M$关于$OB$的对称点$D,$连接$CD$交$OA$于点$E,$交$OB$于点$F,$连接$EM,$$FM,$$OC,$$OD.$

易得$CE = ME,$$DF = MF,$$OC = OM = OD,$$\angle COA=\angle MOA = 10^{\circ},$$\angle DOB=\angle MOB = 30^{\circ},$由两点之间线段最短可得,此时$\triangle MEF$的周长最小,为$ME + MF + EF = CE + DF + EF = CD.$
$\therefore\angle DOM = 60^{\circ},$$\angle COM = 20^{\circ},$$\angle COD=\angle DOM+\angle COM = 80^{\circ}.$
$\therefore\triangle DOM$为等边三角形.
$\therefore\angle OMD=\angle ODM = 60^{\circ}.$
$\because OC = OD = OM,$
$\therefore\angle ODC=\angle OCD=\frac{1}{2}(180^{\circ}-\angle COD)=50^{\circ}.$
$\therefore\angle FDM=\angle ODM-\angle ODC = 10^{\circ}.$
$\because DF = MF,$
$\therefore\angle FMD=\angle FDM = 10^{\circ}.$
$\therefore\angle OMF=\angle OMD-\angle FMD = 50^{\circ}.$
$\because OC = OM,$
$\therefore\angle OMC=\angle OCM=\frac{1}{2}(180^{\circ}-\angle COM)=80^{\circ}.$
$\therefore\angle MCE=\angle OCM-\angle OCD = 30^{\circ}.$
$\because CE = ME,$
$\therefore\angle CME=\angle MCE = 30^{\circ}.$
$\therefore\angle EMO=\angle CMO-\angle CME = 50^{\circ}.$
$\therefore\angle EMF=\angle EMO+\angle OMF = 100^{\circ}.$