电子课本网 第75页

第75页

信息发布者:
$-\frac{3}{2}$
解:$\begin{aligned}&(x - 2y)(x^{2}+2xy + 4y^{2})-(x + 2y)(x^{2}-4y^{2})\\=&x^{3}-(2y)^{3}-(x^{3}-4xy^{2}+2x^{2}y-8y^{3})\\=&x^{3}-8y^{3}-x^{3}+4xy^{2}-2x^{2}y + 8y^{3}\\=&4xy^{2}-2x^{2}y\end{aligned}$
当$x = 4,$$y=\frac{1}{2}$时,
$\begin{aligned}&4\times4\times(\frac{1}{2})^{2}-2\times4^{2}\times\frac{1}{2}\\=&4\times4\times\frac{1}{4}-2\times16\times\frac{1}{2}\\=&4 - 16\\=& - 12\end{aligned}$
解:
(1)由题意,得$(2x - a)(3x + b)=6x^{2}+2bx-3ax - ab=6x^{2}+(2b - 3a)x - ab = 6x^{2}+11x - 10,$$(2x + a)(x + b)=2x^{2}+2bx+ax + ab=2x^{2}+(2b + a)x + ab = 2x^{2}-9x + 10.$
所以$\begin{cases}2b - 3a = 11\\2b + a = - 9\end{cases},$
用$2b - 3a = 11$减去$2b + a = - 9$得:
$\begin{aligned}(2b - 3a)-(2b + a)&=11-(-9)\\2b - 3a - 2b - a&=11 + 9\\-4a&=20\\a&=-5\end{aligned}$
把$a = - 5$代入$2b + a = - 9$得:$2b-5=-9,$$2b=-4,$$b = - 2.$
(2)$(2x - 5)(3x - 2)=6x^{2}-4x-15x + 10=6x^{2}-19x + 10.$
解:根据题意,得$(x^{3}+mx + n)(x^{2}-3x + 4)=x^{5}-3x^{4}+4x^{3}+mx^{3}-3mx^{2}+4mx+nx^{2}-3nx + 4n=x^{5}-3x^{4}+(4 + m)x^{3}+(n - 3m)x^{2}+(4m - 3n)x + 4n.$
因为展开的结果中不含$x^{3}$和$x^{2}$的项,所以$\begin{cases}4 + m = 0\\n - 3m = 0\end{cases},$
由$4 + m = 0$得$m = - 4,$
把$m = - 4$代入$n - 3m = 0$得$n-3\times(-4)=0,$$n + 12 = 0,$$n = - 12.$
2
1
3