解:$\begin{aligned}&(2x^{3}y^{2}-3x^{2}y^{3})\div(\frac{1}{2}xy)^{2}\\=&(2x^{3}y^{2}-3x^{2}y^{3})\div\frac{1}{4}x^{2}y^{2}\\=&2x^{3}y^{2}\div\frac{1}{4}x^{2}y^{2}-3x^{2}y^{3}\div\frac{1}{4}x^{2}y^{2}\\=&(2\div\frac{1}{4})\times(x^{3}\div x^{2})\times(y^{2}\div y^{2})-(3\div\frac{1}{4})\times(x^{2}\div x^{2})\times(y^{3}\div y^{2})\\=&8x - 12y\end{aligned}$