解:
$\begin{aligned}&(3a^{2}b - ab^{2}-2b^{3})\div b-(a - 2b)(b - 2a)\\=&3a^{2}-ab - 2b^{2}-(ab-2a^{2}-2b^{2}+4ab)\\=&3a^{2}-ab - 2b^{2}-ab + 2a^{2}+2b^{2}-4ab\\=&5a^{2}-6ab\end{aligned}$
因为$(a - 1)^{2}+\vert b + 1\vert = 0,$又因为$(a - 1)^{2}\geq0,$$\vert b + 1\vert\geq0,$所以$a - 1 = 0,$$b + 1 = 0,$即$a = 1,$$b = - 1。$
当$a = 1,$$b = - 1$时,原式$=5\times1^{2}-6\times1\times(-1)=5 + 6 = 11。$