解:(1)$x^{3}-xy^{2}=x(x + y)(x - y).$ 当$x = 12,$$y = 5$时
,$x = 12,$$x + y = 17,$$x - y = 07,$
$\therefore$ 密码为121707或171207或071217(答案不唯一)
(2)$\because$ 当$x = 25$时,密码为2821,
$\therefore$ $x^{2}+(m - 3n)x - 6n=(x + 3)(x - 4),$
即$x^{2}+(m - 3n)x - 6n=x^{2}-x - 12.$
$\therefore$ $6n = 12$且$m - 3n = -1,$解得$m = 5,$$n = 2$