解:
$\begin{aligned}&(xy^{2}+x^{2}y)\cdot\frac{x}{x^{2}+2xy + y^{2}}\div\frac{x^{2}y}{x^{2}-y^{2}}\\=&xy(x + y)\cdot\frac{x}{(x + y)^{2}}\cdot\frac{(x + y)(x - y)}{x^{2}y}\\=&x - y\end{aligned}$
当$x = -1,$$y = -\frac{1}{2}$时,原式$=-1-(-\frac{1}{2})=-1+\frac{1}{2}=-\frac{1}{2}$($x,$$y$的取值不唯一)