解:$M - N=\frac{a + 1}{a + 2} - \frac{a + 2}{a + 3}=\frac{(a + 1)(a + 3)-(a + 2)^2}{(a + 2)(a + 3)}$
$=\frac{a^2+3a+a + 3-(a^2+4a + 4)}{(a + 2)(a + 3)}=\frac{a^2+4a + 3 - a^2-4a - 4}{(a + 2)(a + 3)}=-\frac{1}{(a + 2)(a + 3)}。$
因为$a\gt0,$所以$(a + 2)(a + 3)\gt0,$
所以$-\frac{1}{(a + 2)(a + 3)}\lt0,$所以$M - N\lt0,$即$M\lt N。$