证明:(1) $\because BE$平分$\angle ABC,$$\therefore \angle FBE=\angle CBE。$
$\because CE\perp BE,$$\therefore \angle FEB=\angle CEB = 90^{\circ}。$
在$\triangle FBE$和$\triangle CBE$中,
$\begin{cases}\angle FBE=\angle CBE \\BE = BE \\\angle FEB=\angle CEB\end{cases}$
$\therefore \triangle FBE\cong\triangle CBE(ASA),$$\therefore BF = BC。$
(2) $\because \angle BAC=\angle BEF = 90^{\circ},$$\therefore \angle CAF = 90^{\circ},$$\angle ABD+\angle F=\angle ACF+\angle F = 90^{\circ},$$\therefore \angle ABD=\angle ACF。$
在$\triangle BDA$和$\triangle CFA$中,
$\begin{cases}\angle ABD=\angle ACF \\AB = AC \\\angle BAD=\angle CAF = 90^{\circ}\end{cases}$
$\therefore \triangle BDA\cong\triangle CFA(ASA),$$\therefore BD = CF。$
又$\because \triangle FBE\cong\triangle CBE,$$\therefore EF = EC,$即$CF = 2CE,$$\therefore BD = 2CE。$