证明: (1) $\because D$是$AB$的中点,$AC = BC,$$\angle ACB = 90^{\circ},$
$\therefore CD\perp AB,$$\angle ACD=\angle BCD = 45^{\circ},$
$\angle CAD=\angle CBD = 45^{\circ},$
$\therefore AC = BC,$$\angle ACE+\angle ECB = 90^{\circ}。$
$\because BF\perp CE,$$\therefore \angle CBF+\angle ECB = 90^{\circ},$
$\therefore \angle ACE=\angle CBF。$
在$\triangle ACE$和$\triangle CBG$中,
$\begin{cases}\angle ACE=\angle CBF \\AC = BC \\\angle CAE=\angle BCG = 45^{\circ}\end{cases}$
$\therefore \triangle ACE\cong\triangle CBG(ASA),$
$\therefore AE = CG。$
(2) $CM = BE。$
证明:$\because \angle ACB = 90^{\circ},$
$\therefore \angle ACH+\angle BCE = 90^{\circ}。$
$\because AH\perp CE,$
$\therefore \angle ACH+\angle CAH = 90^{\circ},$$\therefore \angle CAH=\angle BCE。$
$\because AC = BC,$$\angle AHC=\angle BEC = 90^{\circ}。$
在$\triangle ACH$和$\triangle CBE$中,
$\begin{cases}\angle CAH=\angle BCE \\AC = BC \\\angle AHC=\angle BEC\end{cases}$
$\therefore \triangle ACH\cong\triangle CBE(AAS),$
$\therefore CH = BE。$
$\because \angle ACM = 45^{\circ},$$\angle AHC = 90^{\circ},$
$\therefore \angle HAC = 45^{\circ}=\angle ACM,$$\therefore AH = CH。$
$\because \angle ADM=\angle CDH = 90^{\circ},$$\angle AMD+\angle DAM = 90^{\circ},$$\angle HCD+\angle DHC = 90^{\circ},$
$\angle DAM=\angle HCD,$$AD = CD。$
在$\triangle ADM$和$\triangle CDH$中,
$\begin{cases}\angle ADM=\angle CDH \\AD = CD \\\angle DAM=\angle DCH\end{cases}$
$\therefore \triangle ADM\cong\triangle CDH(ASA),$
$\therefore CM = CH,$$\therefore CM = BE。$