电子课本网 第133页

第133页

信息发布者:
解:如图,延长$AF$至点$G,$使得$FG = AF,$连接$BG。$

$\because F$为$BE$的中点,$\therefore EF = BF。$
在$\triangle AFE$和$\triangle GFB$中,
$\begin{cases}AF = GF \\\angle AFE=\angle GFB \\EF = BF\end{cases}$
$\therefore \triangle AFE\cong\triangle GFB(SAS),$
$\therefore \angle EAF=\angle G,$$AE = GB,$
$\therefore AE// BG,$$\therefore \angle GBA+\angle BAE = 180^{\circ}。$
$\because \angle BAC+\angle EAD = 180^{\circ},$
$\therefore \angle DAC+\angle BAE = 180^{\circ},$
$\therefore \angle GBA=\angle DAC。$
$\because AD = AE,$$\therefore BG = AD。$
在$\triangle GBA$和$\triangle DAC$中,
$\begin{cases}AB = CA \\\angle GBA=\angle DAC \\BG = AD\end{cases}$
$\therefore \triangle GBA\cong\triangle DAC(SAS),$
$\therefore AG = CD。$
$\because AG = AF + FG = 2AF,$
$\therefore CD = 2AF。$
解:如图,在$BC$上取一点$F,$使得$FB = AB,$连接$DF。$

$\because BD$平分$\angle ABC,$$\angle ABC = 40^{\circ},$$\therefore \angle ABD=\angle FBD = 20^{\circ}。$
在$\triangle ABD$和$\triangle FBD$中,
$\begin{cases}AB = FB \\\angle ABD=\angle FBD \\BD = BD\end{cases}$
$\therefore \triangle ABD\cong\triangle FBD(SAS),$
$\therefore FD = AD,$$\angle BDF=\angle BDA = 180^{\circ}-\angle A-\angle ABD = 60^{\circ}。$
$\therefore \angle FDC=\angle BDA=\angle EDC = 60^{\circ}。$
$\because ED = AD,$$\therefore ED = FD。$
在$\triangle EDC$和$\triangle FDC$中,
$\begin{cases}ED = FD \\\angle EDC=\angle FDC \\DC = DC\end{cases}$
$\therefore \triangle EDC\cong\triangle FDC(SAS),$
$\therefore CE = CF,$$\therefore BC = FB + CF = AB + CE。$
证明: (1) $\because D$是$AB$的中点,$AC = BC,$$\angle ACB = 90^{\circ},$
$\therefore CD\perp AB,$$\angle ACD=\angle BCD = 45^{\circ},$
$\angle CAD=\angle CBD = 45^{\circ},$
$\therefore AC = BC,$$\angle ACE+\angle ECB = 90^{\circ}。$
$\because BF\perp CE,$$\therefore \angle CBF+\angle ECB = 90^{\circ},$
$\therefore \angle ACE=\angle CBF。$
在$\triangle ACE$和$\triangle CBG$中,
$\begin{cases}\angle ACE=\angle CBF \\AC = BC \\\angle CAE=\angle BCG = 45^{\circ}\end{cases}$
$\therefore \triangle ACE\cong\triangle CBG(ASA),$
$\therefore AE = CG。$
(2) $CM = BE。$
证明:$\because \angle ACB = 90^{\circ},$
$\therefore \angle ACH+\angle BCE = 90^{\circ}。$
$\because AH\perp CE,$
$\therefore \angle ACH+\angle CAH = 90^{\circ},$$\therefore \angle CAH=\angle BCE。$
$\because AC = BC,$$\angle AHC=\angle BEC = 90^{\circ}。$
在$\triangle ACH$和$\triangle CBE$中,
$\begin{cases}\angle CAH=\angle BCE \\AC = BC \\\angle AHC=\angle BEC\end{cases}$
$\therefore \triangle ACH\cong\triangle CBE(AAS),$
$\therefore CH = BE。$
$\because \angle ACM = 45^{\circ},$$\angle AHC = 90^{\circ},$
$\therefore \angle HAC = 45^{\circ}=\angle ACM,$$\therefore AH = CH。$
$\because \angle ADM=\angle CDH = 90^{\circ},$$\angle AMD+\angle DAM = 90^{\circ},$$\angle HCD+\angle DHC = 90^{\circ},$
$\angle DAM=\angle HCD,$$AD = CD。$
在$\triangle ADM$和$\triangle CDH$中,
$\begin{cases}\angle ADM=\angle CDH \\AD = CD \\\angle DAM=\angle DCH\end{cases}$
$\therefore \triangle ADM\cong\triangle CDH(ASA),$
$\therefore CM = CH,$$\therefore CM = BE。$