解:(1)

(4)已知$A(1,4),$$B(4,2),$$P(0,m),$$2\leq m\leq4。$
过$A$作$AD\perp y$轴于$D,$过$B$作$BE\perp y$轴于$E,$则$D(0,4),$$E(0,2)。$
$S_{\triangle PAB}=S_{梯形 ADEB}-S_{\triangle ADP}-S_{\triangle BEP}$
$S_{梯形 ADEB}=\frac{1}{2}(AD + BE)\times DE=\frac{1}{2}(1 + 4)\times(4 - 2)=5$
$S_{\triangle ADP}=\frac{1}{2}DP\times AD=\frac{1}{2}(4 - m)\times1=\frac{4 - m}{2}$
$S_{\triangle BEP}=\frac{1}{2}EP\times BE=\frac{1}{2}(m - 2)\times4 = 2(m - 2)$
因为$S_{\triangle PAB}=4,$所以$5-\frac{4 - m}{2}-2(m - 2)=4$
$5-\frac{4 - m}{2}-2m + 4 = 4$
$10-(4 - m)-4m + 8 = 8$
$10 - 4 + m - 4m + 8 = 8$
$-3m=-6$
$m = 2$
所以点$P$的坐标为$(0,2)。$