电子课本网 第4页

第4页

信息发布者:
$15^{\circ}$
解:(2)①$\triangle ABD$是“准互余三角形”。理由:
因为$AD$是$\triangle ABC$的角平分线,
所以$\angle BAC = 2\angle BAD。$
因为$\angle ACB = 90^{\circ},$所以$\angle BAC+\angle B = 90^{\circ}。$
所以$2\angle BAD+\angle B = 90^{\circ}。$
所以$\triangle ABD$是“准互余三角形”。
②因为$\triangle ABE$是“准互余三角形”,且$\angle AEB=\angle ACB+\angle EAC\gt90^{\circ},$
所以$2\angle EAB+\angle ABC = 90^{\circ}$或$\angle EAB+2\angle ABC = 90^{\circ}。$
因为$\angle ABC = 24^{\circ},$所以$\angle EAB = 42^{\circ}$或$\angle EAB = 33^{\circ}。$
当$\angle EAB = 42^{\circ},$$\angle ABC = 24^{\circ}$时,$\angle AEB = 114^{\circ},$
所以$\angle EAC=\angle AEB-\angle ACB = 24^{\circ}。$
当$\angle EAB = 33^{\circ},$$\angle ABC = 24^{\circ}$时,$\angle AEB = 123^{\circ},$
所以$\angle EAC=\angle AEB-\angle ACB = 33^{\circ}。$
所以$\angle EAC$的度数为$33^{\circ}$或$24^{\circ}。$
124
62
解:​$(2) ①$​当点​$ Q $​在​$ BC $​上方时,如图①.
∵​$∠EAF = 56°,$​​$∠CQB = 104°,$​
∴​$∠ACQ + ∠ABQ = 180 + 180 - (56° + 104°) = 200°.$​
∴​$∠FCQ + ∠QBE = 360 - (∠ACQ + ∠ABQ) = 160°.$​
∵​$BM,$​​$CN $​分别平分​$∠QBE,$​​$∠QCF,$​
∴​$∠DCQ + ∠QBD = \frac {1}{2}(∠FCQ + ∠QBE) = 80°.$​
∵​$∠QCB + ∠CBQ = 180 - ∠CQB = 76°,$​
∴​$∠DCB + ∠DBC = ∠QCB + ∠DCQ + ∠CBQ + ∠QBD$​
​$ = (∠DCQ + ∠QBD) + (∠QCB + ∠CBQ) $​
​$= 80° + 76° = 156°.$​
∴​$∠BDC = 180 - (∠DCB + ∠DBC) = 180 - 156° = 24°.$​
​$②$​当点​$ Q $​在​$ BC $​下方时,如图②.
∵​$∠ACB + ∠ABC = 180 - ∠EAF = 124°,$​
∴​$∠FCB + ∠EBC = 360 - 124° = 236°.$​
又∵​$∠CQB = 104°,$​
∴​$∠QCB + ∠QBC = 180 - 104° = 76°.$​
∴​$∠FCQ + ∠QBE = 236° + 76° = 312°.$​
又∵​$BM,$​​$CN $​分别平分​$∠QBE $​和​$∠QCF,$​
∴​$∠DCQ + ∠DBQ = \frac {1}{2}×312° = 156°.$​
∴​$∠BDC = 180 + 180 - 104° - 156° = 100°.$​
综上所述,​$∠BDC $​的度数为​$ 24°$​或​$ 100°$​
​$(3) ∠AOG - \frac {1}{2}∠ACG = 45°$​