解:$(2) ①$当点$ Q $在$ BC $上方时,如图①.

∵$∠EAF = 56°,$$∠CQB = 104°,$
∴$∠ACQ + ∠ABQ = 180 + 180 - (56° + 104°) = 200°.$
∴$∠FCQ + ∠QBE = 360 - (∠ACQ + ∠ABQ) = 160°.$
∵$BM,$$CN $分别平分$∠QBE,$$∠QCF,$
∴$∠DCQ + ∠QBD = \frac {1}{2}(∠FCQ + ∠QBE) = 80°.$
∵$∠QCB + ∠CBQ = 180 - ∠CQB = 76°,$
∴$∠DCB + ∠DBC = ∠QCB + ∠DCQ + ∠CBQ + ∠QBD$
$ = (∠DCQ + ∠QBD) + (∠QCB + ∠CBQ) $
$= 80° + 76° = 156°.$
∴$∠BDC = 180 - (∠DCB + ∠DBC) = 180 - 156° = 24°.$
$②$当点$ Q $在$ BC $下方时,如图②.
∵$∠ACB + ∠ABC = 180 - ∠EAF = 124°,$
∴$∠FCB + ∠EBC = 360 - 124° = 236°.$
又∵$∠CQB = 104°,$
∴$∠QCB + ∠QBC = 180 - 104° = 76°.$
∴$∠FCQ + ∠QBE = 236° + 76° = 312°.$
又∵$BM,$$CN $分别平分$∠QBE $和$∠QCF,$
∴$∠DCQ + ∠DBQ = \frac {1}{2}×312° = 156°.$
∴$∠BDC = 180 + 180 - 104° - 156° = 100°.$
综上所述,$∠BDC $的度数为$ 24°$或$ 100°$
$(3) ∠AOG - \frac {1}{2}∠ACG = 45°$