(1)①证明:因为$\angle ADE=\angle C = 90^{\circ},$
所以$\angle EDB+\angle ADC = 90^{\circ},$$\angle A+\angle ADC = 90^{\circ},$
所以$\angle EDB=\angle A。$
②证明:在$AC$上截取$CF = CD,$连接$FD。$
因为$\angle C = 90^{\circ},$$CF = CD,$
所以$\angle CFD=\angle CDF = 45^{\circ},$
则$\angle AFD = 180^{\circ}-45^{\circ}=135^{\circ}。$
又因为$\angle DBE = 135^{\circ},$所以$\angle AFD=\angle DBE。$
因为$AC = BC,$$CF = CD,$
所以$AC - CF = BC - CD,$即$AF = BD。$
在$\triangle AFD$和$\triangle DBE$中,
$\begin{cases}\angle A=\angle EDB\\AF = BD\\\angle AFD=\angle DBE\end{cases},$
所以$\triangle AFD\cong\triangle DBE(ASA),$所以$DA = DE。$

(2)当$DA = DE$时,$\angle DBE = 90^{\circ}+\frac{1}{2}\angle C。$
理由:在$AC$上截取$CM = CD,$连接$MD。$
因为$AC = BC,$所以$AC - CM = BC - CD,$即$AM = DB。$
因为$\angle ADB=\angle A+\angle C,$$\angle ADB=\angle ADE+\angle EDB,$且$\angle ADE=\angle C,$所以$\angle A=\angle EDB。$
在$\triangle AMD$和$\triangle DBE$中,
$\begin{cases}DA = DE\\\angle A=\angle EDB\\AM = DB\end{cases},$
所以$\triangle AMD\cong\triangle DBE(SAS),$所以$\angle AMD=\angle DBE。$
因为$CM = CD,$
所以$\angle CMD=\angle CDM=\frac{180^{\circ}-\angle C}{2}=90^{\circ}-\frac{1}{2}\angle C。$
又因为$\angle AMD = 180^{\circ}-\angle CMD,$
所以$\angle AMD = 180^{\circ}-(90^{\circ}-\frac{1}{2}\angle C)=90^{\circ}+\frac{1}{2}\angle C,$
所以$\angle DBE = 90^{\circ}+\frac{1}{2}\angle C。$