电子课本网 第12页

第12页

信息发布者:
解: (1)
(2) 解:连接$DB,$$DC。$
由题意,得$DB = DC。$
因为$AD$平分$\angle CAB,$$DM\perp AB,$$DN\perp AC,$所以$DM = DN,$$\angle DAB=\angle DAC。$
在$\triangle DAM$和$\triangle DAN$中,
$\begin{cases}\angle DMA=\angle DNA\\\angle DAM=\angle DAN\\DA = DA\end{cases},$
所以$\triangle DAM\cong\triangle DAN,$所以$AM = AN。$
在$Rt\triangle DBM$和$Rt\triangle DCN$中,
$\begin{cases}DB = DC\\DM = DN\end{cases},$
所以$Rt\triangle DBM\cong Rt\triangle DCN,$所以$BM = CN,$
即$AB - AM = AN - AC,$
所以$AB - AM = AM - AC,$
所以$AM=\frac{1}{2}(AB + AC)=\frac{1}{2}\times(8 + 6)=7。$
(1) 证明:因为$AB = AC,$所以$\angle ABC=\angle ACB。$
在$\triangle BCD$和$\triangle CBE$中,
$\begin{cases}BC = CB\\\angle DBC=\angle ECB\\BD = CE\end{cases},$
所以$\triangle BCD\cong\triangle CBE,$
所以$\angle FBC=\angle FCB,$所以$BF = CF。$
(2) 解:因为$AB = AC,$$\angle BAC = 45^{\circ},$
所以$\angle ABC=\angle ACB=\frac{1}{2}(180^{\circ}-\angle BAC)=67.5^{\circ}。$

(1)知$\angle FBC=\angle FCB,$
所以易得$\angle FBD=\angle ECF。$
设$\angle FBD=\angle ECF = x,$
则$\angle FBC=\angle FCB = 67.5^{\circ}-x,$
$\angle BDF=\angle ECF+\angle BAC=x + 45^{\circ},$
$\angle DFB = 2\angle FBC = 2(67.5^{\circ}-x)=135^{\circ}-2x。$
因为$\triangle BFD$是等腰三角形,分三种情况讨论:
①当$BD = BF$时,$\angle BDF=\angle DFB,$
所以$x + 45^{\circ}=135^{\circ}-2x,$
解得$x = 30^{\circ},$即$\angle FBD = 30^{\circ};$
②当$BD = DF$时,$\angle FBD=\angle DFB,$
所以$x = 135^{\circ}-2x,$
解得$x = 45^{\circ},$即$\angle FBD = 45^{\circ};$
③当$BF = DF$时,$\angle FBD=\angle FDB,$
所以$x = x + 45^{\circ},$不符合题意,舍去。
综上所述,$\angle FBD = 30^{\circ}$或$45^{\circ}。$
解:(1) 证明:在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ},$$\angle A = 30^{\circ},$
所以$\angle ABC = 60^{\circ},$$BC=\frac{1}{2}AB。$
因为$BD$平分$\angle ABC,$所以$\angle CBD=\angle DBA=\angle A = 30^{\circ},$
所以$AD = BD。$
因为$DE\perp AB,$所以$AE = BE=\frac{1}{2}AB,$
所以$BC = BE,$所以$\triangle EBC$是等边三角形。
(2) 画出完整图形如图①所示,$AD = DG + DM。$
如图①,延长$ED$至点$W,$使得$DW = DM,$连接$MW。$

(1),易得$\angle ADE=\angle BDE = 60^{\circ},$所以$\angle MDB = 60^{\circ},$
$\angle WDM=\angle ADE = 60^{\circ}。$
又因为$DM = DW,$所以$\triangle WDM$是等边三角形,
所以$DW = WM = DM,$$\angle W=\angle WMD = 60^{\circ},$
所以$\angle W=\angle MDB。$
因为$\angle BMG = 60^{\circ},$
所以$\angle WMD+\angle DMG=\angle BMG+\angle DMG,$
即$\angle WMG=\angle DMB。$
在$\triangle WGM$和$\triangle DBM$中,
$\begin{cases}\angle W=\angle MDB\\WM = DM\\\angle WMG=\angle DMB\end{cases},$
所以$\triangle WGM\cong\triangle DBM,$所以$WG = DB。$

(1)得$AD = BD,$因为$WG = DG + DW = DG + DM,$
所以$AD = DG + DM。$
(3) $AD = DG - DN。$
理由:如图②,延长$BD$至点$H,$使得$DH = DN,$连接$HN。$

(2),得$\angle ADE = 60^{\circ},$$\angle CDB = 60^{\circ},$
所以$\angle HDN=\angle CDB = 60^{\circ}。$
又因为$DH = DN,$所以$\triangle DHN$为等边三角形,
所以$HN = DN = HD,$$\angle H=\angle HND = 60^{\circ},$
所以$\angle H=\angle NDG。$
因为$\angle BNG = 60^{\circ},$
所以$\angle HND+\angle DNB=\angle BNG+\angle DNB,$即$\angle HNB=\angle DNG。$
在$\triangle DNG$和$\triangle HNB$中,
$\begin{cases}\angle DNG=\angle HNB\\DN = HN\\\angle NDG=\angle H\end{cases},$
所以$\triangle DNG\cong\triangle HNB,$所以$DG = HB。$
因为$HB = HD + BD = DN + BD,$
且$AD = BD,$所以$DG = DN + AD,$
即$AD = DG - DN。$