解:因为$\sqrt{2x - y}+\vert y + 2\vert = 0,$又因为$\sqrt{2x - y}\geq0,$$\vert y + 2\vert\geq0,$
所以$\begin{cases}2x - y = 0\\y + 2 = 0\end{cases},$
由$y + 2 = 0$得$y = - 2,$
把$y = - 2$代入$2x - y = 0$得$2x-(-2)=0,$$2x=-2,$$x = - 1。$
$\begin{aligned}&[(x - y)^{2}+(x + y)(x - y)]\div(2x)\\&=(x^{2}-2xy + y^{2}+x^{2}-y^{2})\div(2x)\\&=(2x^{2}-2xy)\div(2x)\\&=x - y\end{aligned}$
当$x = - 1,$$y = - 2$时,原式$=-1-(-2)=-1 + 2 = 1。$