电子课本网 第23页

第23页

信息发布者:
解:因为$\sqrt{2x - y}+\vert y + 2\vert = 0,$又因为$\sqrt{2x - y}\geq0,$$\vert y + 2\vert\geq0,$
所以$\begin{cases}2x - y = 0\\y + 2 = 0\end{cases},$
由$y + 2 = 0$得$y = - 2,$
把$y = - 2$代入$2x - y = 0$得$2x-(-2)=0,$$2x=-2,$$x = - 1。$
$\begin{aligned}&[(x - y)^{2}+(x + y)(x - y)]\div(2x)\\&=(x^{2}-2xy + y^{2}+x^{2}-y^{2})\div(2x)\\&=(2x^{2}-2xy)\div(2x)\\&=x - y\end{aligned}$
当$x = - 1,$$y = - 2$时,原式$=-1-(-2)=-1 + 2 = 1。$
解:
$\begin{aligned}&(x + y + 2)(x + y - 2)-(x + 2y)^{2}+3y^{2}\\&=[(x + y)+2][(x + y)-2]-(x^{2}+4xy + 4y^{2})+3y^{2}\\&=(x + y)^{2}-4-x^{2}-4xy - 4y^{2}+3y^{2}\\&=x^{2}+2xy + y^{2}-4-x^{2}-4xy - 4y^{2}+3y^{2}\\&=(x^{2}-x^{2})+(2xy - 4xy)+(y^{2}- 4y^{2}+3y^{2})-4\\&=-2xy - 4\end{aligned}$
当$x = -\frac{1}{2},$$y = \frac{1}{3}$时,原式$=-2\times(-\frac{1}{2})\times\frac{1}{3}-4=\frac{1}{3}-4=-\frac{11}{3}。$
解:(1)绿化的总面积$=(3a + b)(2a + b)-2(a - b)^{2}$
$\begin{aligned}&=(3a + b)(2a + b)-2(a^{2}-2ab + b^{2})\\&=6a^{2}+3ab + 2ab + b^{2}-2a^{2}+4ab - 2b^{2}\\&=(6a^{2}-2a^{2})+(3ab + 2ab + 4ab)+(b^{2}-2b^{2})\\&=4a^{2}+9ab - b^{2}\end{aligned}$(平方米)
(2)当$a = 40,$$b = 20$时,
$4a^{2}+9ab - b^{2}=4\times40^{2}+9\times40\times20 - 20^{2}$
$=4\times1600+7200 - 400$
$=6400+7200 - 400$
$=13200$(平方米)
所以绿化的总面积为13200平方米。