解:
$\begin{aligned}&\frac{2}{x + 3}+\frac{2}{3 - x}+\frac{2x + 6}{x^{2}-9}\\=&\frac{2}{x + 3}-\frac{2}{x - 3}+\frac{2(x + 3)}{(x + 3)(x - 3)}\\=&\frac{2(x - 3)-2(x + 3)+2(x + 3)}{(x + 3)(x - 3)}\\=&\frac{2x-6-2x - 6+2x + 6}{(x + 3)(x - 3)}\\=&\frac{2x-6}{(x + 3)(x - 3)}\\=&\frac{2(x - 3)}{(x + 3)(x - 3)}\\=&\frac{2}{x + 3}\end{aligned}$
因为$x$为整数,$x + 3$为整数,若分式$\frac{2}{x + 3}$的值是整数,则$x + 3$的值为$\pm1$或$\pm2。$
当$x + 3 = 1$时,$x=-2;$当$x + 3=-1$时,$x=-4;$当$x + 3 = 2$时,$x=-1;$当$x + 3=-2$时,$x=-5。$
所以所有符合要求的整数$x$的值为$-1,$$-2,$$-4,$$-5。$