电子课本网 第35页

第35页

信息发布者:
解:
$\begin{aligned}&(3+\frac{n}{m})\div\frac{9m^{2}-n^{2}}{m}\\=&(\frac{3m}{m}+\frac{n}{m})\div\frac{(3m + n)(3m - n)}{m}\\=&\frac{3m + n}{m}\times\frac{m}{(3m + n)(3m - n)}\\=&\frac{1}{3m - n}\end{aligned}$
解:
$\begin{aligned}&[4(x^{2}+y)(x^{2}-y)-(2x^{2}-y)^{2}]\div y\\=&[4(x^{4}-y^{2})-(4x^{4}-4x^{2}y + y^{2})]\div y\\=&(4x^{4}-4y^{2}-4x^{4}+4x^{2}y - y^{2})\div y\\=&(4x^{2}y - 5y^{2})\div y\\=&4x^{2}-5y\end{aligned}$
当$x = \frac{1}{2},$$y = 3$时,
原式$=4\times(\frac{1}{2})^{2}-5\times3=4\times\frac{1}{4}-15=1 - 15=-14$
解:(1)因为$\angle C = 90^{\circ},$$\angle BAC = 40^{\circ},$所以$\angle ABC = 90^{\circ}-40^{\circ}=50^{\circ}。$
因为$BD$平分$\angle ABC,$所以$\angle ABD=\frac{1}{2}\angle ABC = 25^{\circ}。$
所以$\angle BDC=\angle BAC+\angle ABD = 40^{\circ}+25^{\circ}=65^{\circ}。$
(2)因为$AE$平分$\angle BAC,$所以$\angle EAD=\frac{1}{2}\angle BAC = 20^{\circ}。$
因为$\angle EDC=\angle EAD+\angle AED,$
所以$\angle AED=\angle EDC-\angle EAD = 65^{\circ}-20^{\circ}=45^{\circ}。$