$解:令-\dfrac{1}{2}x+\dfrac{5}{2}=\dfrac{2}{x},解得x=1或x=4$
$将x=1代入y=\dfrac{2}{x},得y=2$
$∴K(1,2)$
$作点P关于x轴的对称点P',连接KP',线段KP'与x轴的交点即为点C$
$∵P(4,\dfrac{1}{2})$
$∴P'(4,-\dfrac{1}{2})$
$∴PP'=1$
$设KP'所在直线的函数表达式为y=mx+n$
$将K(1,2),P'(4,-\dfrac{1}{2})代入,得$
$\begin{cases}{m+n=2}\\{4m+n=-\dfrac{1}{2}}\end{cases}$
$解得$
$\begin{cases}{m=-\dfrac{5}{6}}\\{n=\dfrac{17}{6}}\end{cases}$
$∴直线KP'的函数表达式为y=-\dfrac{5}{6}x+\dfrac{17}{6}$
$令y=0,解得x=\dfrac{17}{5}$
$∴C(\dfrac{17}{5},0)$
$∴S_{△PKC}=\dfrac{1}{2}·(x_C-x_K) · PP'=\dfrac{1}{2}×(\dfrac{17}{5}-1)×1=\dfrac{6}{5}$
$∴当PC+KC的值最小时,△PKC的面积为\dfrac{6}{5}。$