证明:∵$BI、$$CI$分别平分$∠ABC、$$∠ACB$
∴$∠IBC=\frac {1} {2}∠ABC,$$∠ICB=\frac {1} {2}∠ACB$
∵$∠A+∠ABC+∠ACB=180°$
∴$∠ABC+∠ACB=180°-∠A$
∵$∠BIC+∠IBC+∠ICB=180°$
∴$∠BIC=180°-(∠IBC+∠ICB)$
$ =180°-\frac {1} {2}(∠ABC+∠ACB)$
$ =180°-\frac {1} {2}(180°-∠A)$
$ =90°+\frac {1} {2}∠A$