$解:选择小东的思路证明如下:\ $
$\frac{1}{n-1}+\frac{1}{n+1}-\frac{2}{n}$
$=\frac {n^{2} +n+n^{2} -n-2n^{2} +2}{n(n-1)(n+1)}$
$=\frac{2}{n(n-1)(n+1)}.$
$∵n>1,$
$∴n(n-1)(n+1)>0,\ $
$∴\frac{1}{n-1}+\frac{1}{n+1}-\frac{2}{n}>0,$
$∴\frac{1}{n-1}+\frac{1}{n+1}>\frac{2}{n}.$