$解:连接EF,交AC于点O.$
$∵四边形ABCD是矩形,$
$∴AD=BC,∠ABC=90°,$
$∴AC=\sqrt {AB²+BC²} =5.$
$∵E、F分别是AD、BC的中点,$
$∴AE=BF,$
$∴四边形ABFE是矩形,$
$∴EF=AB=3.$
$在△AEO和△FO中,$
$\begin{cases}{∠EOA=∠FOC,\ }\ \\ { ∠EAO=∠FCO, } \\{AE=CF,}\end{cases}\ $
$∴ △ABO≌△CFO(AAS),$
$∴EO=FO,AO=CO=\frac{5}{2},$
$∴O为EF、AC的中点.$
$∵∠EGF=90°,$
$∴OG=\frac{1}{2}EF=\frac{3}{2},$
$∴AG=OA-OG=1或AG=OA+OG=4,$
$∴AG的长为1或4.$