电子课本网 第143页

第143页

信息发布者:
D
$2\sqrt {3}\ $
$-\sqrt {6}\ $
$\frac{\sqrt {\ a-b}}{a-b}$
C
$3\sqrt {5}\ $
$\frac{2\sqrt {2} +\sqrt {3} }{5}$
$解:∵\frac{1}{3-\sqrt {7} }=\frac{3+7}{(3+\sqrt{7})(3-\sqrt {7} )} =\frac{3+\sqrt {7} }{2},$
$又2<\sqrt {7}< 3,∴\frac{5}{2}<\frac{3+\sqrt {7} }{2}<3,\ $
$∴a=2,b=\frac{3+\sqrt{7}}{2}-2=\frac{\sqrt {7} -1}{2},$
$∴\frac{a}{b}=2÷\frac {\sqrt {7} -1}{2}=\frac{4}{\sqrt {7} -1}=\frac{2\sqrt {7} +2}{3}.$
$ \begin{aligned}解:原式&=\frac{(2+\sqrt {3} )^{2} }{2+\sqrt {3} } \\ &=2+\sqrt {3} . \\ \end{aligned}$
$ \begin{aligned}解:原式&=\frac{(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt {y} } \\ &=\sqrt{x} +\sqrt{y} \\ \end{aligned}$
(更多请点击查看作业精灵详解)
(更多请点击查看作业精灵详解)
(更多请点击查看作业精灵详解)
$解:∵ x>2,$
$∴ \frac{x-2+\sqrt{x²-4}}{x+2+\sqrt{x²-4}}\ $
$=\frac{(\sqrt {\ x-2})²+\sqrt {(x+2)(x-2)} }{(\sqrt{x+2})²+\sqrt {(x+2)(x-2)} }$
$= \frac{\sqrt {x-2} (\sqrt{x-2}+\sqrt{x+2})}{\sqrt {x+2}(\sqrt{x+2}+\sqrt{x-2})}\ $
$=\frac{\sqrt {x-2}}{\sqrt{x+2}}$
$=\frac{\sqrt {x²-4}}{x+2}.$
$解:\frac{\sqrt {2} +2\sqrt {3}\ +\sqrt {5}\ }{(\sqrt {2}\ +\sqrt {3}\ )(\sqrt {3}\ +\sqrt {5}\ )}\ $
$=\frac{(\sqrt {2}\ +\sqrt {3}\ )+(\sqrt {3}\ +\sqrt{5})}{(\sqrt {2}\ +\sqrt {3}\ )(\sqrt {3} +\sqrt{5})}\ $
$=\frac {\sqrt {2} +\sqrt {3}\ }{(\sqrt {2}+\sqrt {3}\ )(\sqrt {3} +\sqrt {5}\ )}+\frac {\sqrt {3} +\sqrt {5} }{(\sqrt {2}+\sqrt {3}\ )(\sqrt {3} +\sqrt {5} )}$
$=\frac {1}{\sqrt {3}+\sqrt {5}}+\frac {1}{\sqrt {2}+\sqrt {3}}$
$=\frac {\sqrt {5}+\sqrt {3}-2\sqrt {2} }{2}.$
$原式=\frac {(\sqrt {2}+\sqrt {5}-\sqrt {3} )^{2} }{(\sqrt {2}+\sqrt {5}+\sqrt {3}\ )(\sqrt {2}+\sqrt {5}-\sqrt {3}\ )}$
$=\frac {(\sqrt {2}+\sqrt {5}-\sqrt {3}\ )^{2} }{(\sqrt {2}+\sqrt {5})^{2} -3}$
$=\frac {\sqrt {10}-\sqrt {6}-\sqrt {15}+5 }{\sqrt {10} +2}$
$=\frac {(\sqrt {10}-\sqrt {6}-\sqrt {15}+5)(\sqrt {10} -2)}{(\sqrt {10} +2)(\sqrt {10} -2)}$
$=\frac {3\sqrt {10} -3\sqrt {6} }{6}$
$=\frac {\sqrt {10} -\sqrt {6} }{2}.$