$解:设n-m=t$
$∵A(1,m+1),B(a,m+1)\ \ $
$∴AB=a-1,AB//x轴$
$∵A(1,m+1),D(1,m+a)$
$∴ AD=(m+a)-(m+1)=a-1,AD//y轴$
$如图,分别过点P、C作PE⊥AB、CF⊥AB分别$
$交AB、AB的延长线于点E、F$
$∵P(n-m,n)、C(3,m+3)$
$∴点P到AD的距离为n-m-1=t- 1,$
$PE=n-(m+1)=t-1,CF=(m+3)-(m+1)=2,$
$BE=a-(n-m)=a-t,BF=3-a,EF=3-(n-m)=3- t$
$∴S_{△PAD}=\frac 1 2(a-1)(t-1),$
$S_{△PBC}=S_{梯形PEFC}-S_{△PBE}-S_{△BPC}=\frac 1 2(t-1+2)(3-t)-\frac 1 2(a-t)(t-1)-\frac 1 2(3-a)×2$
$∵S_{△PAD}=S_{△PBC}$
$∴\frac 1 2(a-1)(t-1)=\frac 1 2(t-1+2)(3-t)-\frac 1 2(a-t)(t-1)-\frac 1 2(3-a)×2$
$化简得at-2a-t+2=0 $
$将左边分解因式得(a-1)(t-2)=0$
$∵ 1\lt a\lt 3$
$∴a-1≠0$
$∴t-2=0,即t=2$
$∴n-m=2$