$解:(3)设点C的坐标为(t,\frac{1}{2}t).$
$∵A(4,0)、B(0,2),$
$∴OA=4,OB=2.①$
$如图①,当t>2,即点C在AB上方时,S_{△ABC}=S_{△OBC}+S_{△OAC}-S_{△OAB}=3,$
$∴\frac{1}{2}×2t+\frac{1}{2}×4×\frac{1}{2}t-\frac{1}{2}×4×2=3,解得t=\frac{7}{2}.$
$此时点C的坐标为(\frac{7}{2},\frac{7}{4}).②$
$如图②,当t<2,即点C在AB下方时,$
$∵S_{△OAB}=\frac{1}{2}×4×2=4>3,$
$∴ S_{△ABC}=S_{△OAB}-S_{△OBC}=S_{△OAC}=3,$
$∴4-\frac{1}{2}×2t-\frac{1}{2}×4×\frac{1}{2}t=3,解得t=\frac{1}{2}.$
$此时点C的坐标为(\frac{1}{2},\frac{1}{4}).$
$综上所述,点C的坐标为(\frac{7}{2},\frac{7}{4})或(\frac{1}{2},\frac{1}{4})$