$解:(2)∵(1)中结论成立,证明如下:$
$在AB上截取AG=AD,连接CG$
$∵AC平分∠PAB$
$∴∠DAC=∠CAB$
$在△ADC与△AGC中$
$\begin{cases}{AD=AG} \\{∠DAC=∠GAC}\\ {AC=AC} \end{cases}$
$∴△ADC≌△AGC(\mathrm {SAS})$
$∴∠DCA=∠ACG$
$∵AP// BQ$
$∴∠DAC+∠CAB+∠GBC+∠CBE=180°$
$∵∠DAC=∠CAB,∠GBC=∠CBE$
$∴∠CAB+∠GBC=90°$
$∴∠ACB=90°,即∠ACG+ ∠GCB=90°$
$∵∠DCA+∠ACG+ ∠GCB+∠BCE= 180°$
$∴∠DCA+∠BCE=90°$
$∴∠GCB=∠ECB$
$在△BGC与△BEC中$
$\begin{cases}{∠GCB=∠ECB} \\{BC=BC}\\ {∠ABC=∠CBE} \end{cases}$
$∴△BGC≌△BEC(\mathrm {ASA})$
$∴BG= BE$
$∴AD+ BE= AG+ BG= AB$