$证明:(2)∵∠ABC=∠DEF$
$∴180°-∠ABC= 180°-∠DEF,$
$即∠CBG=∠FEH$
$在△CBG 和△FEH中$
$\begin{cases}{∠CGB=∠FHE}\\{∠CBG=∠FEH} \\ {BC=EF} \end{cases}$
$∴△CBG≌△FEH(\mathrm {AAS})$
$∴CG= FH$
$在Rt△ACG 和Rt△DFH中$
$\begin{cases}{AC=DF} \\ {CG=FH} \end{cases}$
$∴Rt△ACG≌Rt△DFH(\mathrm {HL})$
$∴∠A=∠D$
$在△ABC和△DEF 中$
$\begin{cases}{ ∠ABC=∠DEF}\\{∠A=∠D} \\ {AC=DF} \end{cases}$
$∴△ABC≌△DEF(\mathrm {AAS})$