$证明:(1)∵BC⊥AE,∠BAE=45°,\ $ $∴∠CBA=∠CAB,$ $∴BC=AC.\ $ $在△BCE和△ACD中,\ $ $\begin{cases}{BC=AC,\ }\\{∠BCE=∠ACD=90°,}\\{CE=CD,\ }\end{cases}$ $∴△BCE≌△ACD(\mathrm {SAS}),\ $ $∴AD=BE.$ $(2)∵△BCE≌△ACD,$ $∴∠EBC=∠DAC.$ $∵∠BDP=∠ADC,$ $∴∠BPD=∠DCA=90°.$ $∵AB=AE,$ $∴AD平分∠BAE.$ (更多请点击查看作业精灵详解)
$解:(1)BE=CF.理由如下:$ $∵△ABC和△ACD都是等边三角形,$ $∴∠BAC=∠B=∠ACD=60°,AB=AC.$ $∵∠EAF=∠BAC=60°,$ $∴∠CAF+∠CAE=∠CAE+∠BAE.$ $∴∠CAF=∠BAE.$ $在△ABE和△ACF中,\ $ $\begin{cases}{∠B=∠ACF,}\\{AB=AC,}\\{∠BAE=∠CAF,}\end{cases}$ $∴△ABE≌△ACF(\mathrm {ASA}),$ $∴BE=CF. $ $(2)成立.理由如下:$ $∵△ABC和△ACD都是等边三角形,$ $∴∠ACB=∠ADC=∠CAD=60°,$ $AC=AD=BC=CD,$ $∴∠ACE=∠ADF=120°.$ $∵∠EAF=∠CAD=60°,$ $∴∠EAF-∠EAD=∠CAD-∠EAD,$ $∴∠CAE=∠DAF.$ $在△ACE和△ADF中,\ $ $\begin{cases}{∠CAE=∠DAF,}\\{AC=AD,}\\{∠ACE=∠ADF,}\end{cases}$ $∴△ACE≌△ADF(\mathrm {ASA}),$ $∴CE=DF,$ $∴CE+BC=DF+CD,即BE=CF.$
|
|