$解:(1)在Rt△ACB和Rt△ADB中,\ $ $\begin{cases}{AC=AD}\\{AB=AB}\end{cases}$ $∴Rt△ACB≌Rt△ADB(\mathrm {HL}),\ $ $∴∠CAB=∠DAB.$ $(2)如图,将△ADB以点B为旋转中心,旋转至BD与BC重合$ $∵∠ACB=∠A_1DB=90°, $ $ ∴此时A、C、A_1三点共线$ $ ∵AB=A_{1}B,$ $∴△ABA_{1}为等腰三角形.$
$解:(3)BD=DE-CE(或DE=BD+CE).\ $ (更多请点击查看作业精灵详解)
$证明:(1)①∵∠BAC=90°,$ $∴∠BAD+∠CAE=90°.\ $ $∵CE⊥AE,$ $∴∠ACE+∠CAE=90°,\ $ $∴∠ACE=∠BAD\ $ $又BD⊥AE,CE⊥AE,$ $∴∠ADB=∠CEA=90°.$ $在△ABD和△CAE中,$ $\begin{cases}{∠BAD=∠ACE,\ }\\{∠ADB=∠CEA,\ }\\{AB=CA,\ }\end{cases}$ $∴△ABD≌△CAE(\mathrm {AAS}).$ $②∵△ABD≌△CAE,$ $∴BD=AE,AD=CE.\ $ $∵AE=DE+AD,$ $∴BD=DE+CE.$
$解:(2)DE=BD+CE.证明如下:\ $ $∵∠BAC=90°,$ $∴∠BAD+∠CAE=90°.\ $ $∵CE⊥AE,$ $∴∠ACE+∠CAE=90°,\ $ $∴∠ACE=∠BAD.\ $ $又BD⊥AE,CE⊥AE,\ $ $∴∠D=∠E=90°.\ $ $\ 在△ABD和△CAE中,\ $ $\begin{cases}{∠BAD=∠ACE,}\\{∠D=∠E,\ }\\{AB=CA,\ }\end{cases}$ $∴△ABD≌△CAE(\mathrm {AAS}),\ $ $∴BD=AE,AD=CE,\ $ $∵DE=AE+AD,$ $∴DE=BD+CE.$
|
|