$解:(2)如图,连接CO、C'O、C''O、CC'、C''C',\ $ $∵△ABC和△A'B'C'关于直线MN对称,△A'B'C'和△A''B''C''关于直线EF对称,\ $ $∴∠COM=∠MOC',∠C'OE=∠C''OE.\ $ $∴∠COC''=2(∠MOC'+∠C'OE)=2∠MOE.\ $ $∴∠COC''是直线MN、EF所夹锐角α的2倍$ $(更多请点击查看作业精灵详解)$
$解:(2)如图,连接OC,过点O作OF⊥AB于点F.\ $ $∵点O为△ABC的角平分线交点,\ $ $∴点O到AB、AC、BC的距离相等,长度为OF,\ $ $设OF=h,则S_{△ABC}=S_{△ACO}+S_{△BCO}+S_{△ABO}\ $ $=\frac{1}{2}×AC×h+\frac{1}{2}×BC×h+\frac{1}{2}×AB×h$ $=\frac{1}{2}×7.5h+\frac{1}{2}×4h+\frac{1}{2}×8.5h=15,$ $解得h=1.5.\ $ $故点O到边AB的距离为1.5.\ (更多请点击查看作业精灵详解)$
$解:(3)由题意,得直线MN垂直平分CC',$ $直线EF垂直平分C''C',$ $直线MN与EF相交于点O,$ $∴CO=OC'=OC'',$ $∴点O是△C'C''C三边垂直平分线的交点$
$解:(1)∵BC=4,AC=7.5,AB=8.5,\ $ $∴p=\frac{4+7.5+8.5}{2}=10,$ $∴S_{△ABC}$ $= \sqrt{10×(10-4)×(10-7.5)×(10-8.5)}$ $=15.$
$解:(1)∵BD⊥直线m,CE⊥直线m,\ $ $∴∠BDA=∠CEA=90°.\ $ $∵∠BAC=90°,\ $ $∴∠BAD+∠CAE=90°.\ $ $∵∠BAD+∠ABD=90°,\ $ $∴∠CAE=∠ABD,\ $ $在△ADB和△CEA中,$ $\begin{cases}{∠ABD=∠CAE,\ \ }\\{∠BDA=∠AEC,\ }\\{AB=CA,\ }\end{cases}$ $∴△ADB≌△CEA(\mathrm {AAS}),\ $ $∴AE=BD,AD=CE,\ $ $∴DE=AE+AD=BD+CE.$
$解:(2)成立.证明如下;\ $ $∵∠BDA=∠BAC=α,\ $ $∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,$ $∴∠CAE=∠ABD.\ \ $ $在△ADB和△CEA中,\ $ $\begin{cases}{∠ABD=∠CAE,}\\{∠BDA=∠AEC,\ }\\{AB=CA,\ }\end{cases}$ $∴△ADB≌△CEA(\mathrm {AAS}),\ $ $∴AE=BD,AD=CE,\ $ $∴DE=AE+AD=BD+CE,$
|
|