$ 解:(1)\ \mathrm {m^2}+m+4=(m+\frac {1}{2})^2+\frac {15}{4},$
$ \because(m+\frac {1}{2})^2 \geqslant 0,$
$ \therefore(m+\frac {1}{2})^2+\frac {15}{4} \geqslant \frac {15}{4} . $
$ \therefore\ \mathrm {m^2}+m+4 的 最小值为 \frac {15}{4}$
$ (2) 4-x^2+2 x=-(x-1)^2+5,$
$ \because-(x-1)^2 \leqslant 0, $
$ \therefore-(x-1)^2+5 \leqslant 5 .$
$ \therefore 4-x^2+2 x 的最大值为 5$