$解:( 1 ) 过点O作OE⊥AC,垂足为点E,$
$∵OE⊥AC,AC=2$
$∴AE=\frac {1}{2}AC=1$
$∵点D翻折后与点O重合$
$∴OE=\frac {1}{2}r$
$在Rt△OAE中,OA^2=OE^2+AE^2,$
$即 r^2=(\frac {1}{2}r)^2+1^2$
$解得,r=\frac {2\sqrt{3}}{3}$
$∴\odot O的半径r为\frac {2\sqrt{3}}{3}$
$( 2 ) 连接BC,∵AB为\odot O的直径$
$∴∠ACB=90°∵∠BAC=25°$
$∴∠ABC=90°-25°=65°$
$∵∠ADC是优弧AC所对的圆周角,∠ABC是劣弧AC所对的圆周角$
$∴∠ADC+∠ABC=180°$
$∴∠ADC=180°-65°=115°$
$∴∠BCD=∠ADC-∠ABC=50°$
$∴∠DCA=90°-∠BCD=40°$