$解:(2)分两种情况$
$①当AC经过圆心,B_2C是⊙O的切线时$
$此时B_2C⊥B_2O$
$∵B_2(\frac {\sqrt{2}}{2},-\frac {\sqrt{2}}{2})$
$∴y_{B_2O}=-x$
$∴直线B_2C的斜率为1$
$设直线B_2C的解析式为y=x+b$
$把(\frac {\sqrt{2}}{2},-\frac {\sqrt{2}}{2})代入:$
$\frac {\sqrt{2}}{2}+b=-\frac {\sqrt{2}}{2}$
$b=-\sqrt{2},∴y_{B_2C}=x-\sqrt{2}$
$当y=0时,x-\sqrt{2}=0,x=\sqrt{2}$
$∴C(\sqrt{2},0)$
$②当B_2C经过圆心,AC是⊙O的切线时$
$∵A(-1,0)∴C的横坐标为-1$
$由①知,直线B_2O的解析式为y=-x$
$当x=-1时,y=1$
$∴C(-1,1)$
$综上所述:C(\sqrt{2},0)或(-1,1)$