$解:如图,过点B作BE⊥AC,垂足为E.$
$由题意,得$
$∠ACD=25°,∠BCD=55°,$
$∠FAB=20°,AB=1000米,CD//FA,$
$∴ ∠CAF=∠ACD=25°,$
$∴ ∠BAC=∠FAB+∠CAF=45°,$
$∠ACB=∠BCD-∠ACD=30°,$
$∴ 在Rt△ABE中,AE=AB×cos{45}°=1000× \frac {\sqrt{2}}{2} =500\sqrt{2} (米),$
$BE=AB×sin 45°=1000×\frac {\sqrt{2}}{2} =500\sqrt{2} (米),$
$∴ 在Rt△BCE中,BC= \frac {BE}{sin{30}°} =1000 \sqrt{2} 米,$
$CE= \frac {BE}{tan{30}°} =500 \sqrt{2} ÷ \frac {\sqrt{3}}{3} =500\sqrt{6}(米),$
$∴ AC=AE+CE=(500 \sqrt{2}+500 \sqrt{6} )米,$
$∴ AC-BC=500 \sqrt{2}+500 \sqrt{6} -1000 \sqrt{2}$
$\ =500 \sqrt{6}-500 \sqrt{2} ≈520(米),$
$∴ 甲组同学比乙组同学大约多走520米的路程.$