$解:(2)如图,过点A作AE⊥CD,垂足为E,$
$连接CO并延长,交⊙O于点F,连接AF.$
$∵在Rt△AED中,cos∠ADC=\frac{DE}{AD}=\frac{\sqrt{2}}{4},$
$AD=2 \sqrt{2},$
$∴DE=1.$
$∴ 由勾股定理,得AE= \sqrt{AD²-DE²}= \sqrt{7}\ $
$∵△BAC∽△BCD,$
$∴\frac{AC}{CD}=\frac{AB}{CB}=\frac{4\sqrt{2}}{4}=\sqrt{2}.$
$设CD=x,则AC=\sqrt{2}x,CE=x-1.$
$∵在Rt∠ACE中,由勾股定理,得$
$AC²=CE²+AE²,$
$∴(\sqrt{2}x)²=(x-1)²+(\sqrt{7})²,$
$即x²+2x-8=0,$
$解得x_{1}=2,x_{2}=-4(不合题意,舍去).$
$∴CD=2,AC=2\sqrt{2}$
$∵ AC=AC,$
$∴∠AFC=∠ADC.$
$∵CF为⊙O的直径,\ $
$∴∠CAF=90°.$
$∴ sin∠AFC=\frac{AC}{CF}=sin∠ADC=\frac{AE}{AD}$
$∴\frac{2\sqrt{2}}{CF}=\frac{\sqrt{7}}{2\sqrt{2}},$
$解得CF=\frac{8\sqrt{7}}{7}.$
$∴⊙O的半径为\frac{4\sqrt{7}}{7}\ $