$(1)$证明:∵四边形$ABCD$是正方形
∴$AD= CD=BC$,$∠BAD=∠ADC=∠BCD=90°$,即$∠ADN+∠CDN=90°$
由折叠的性质,得$CF=CD$,$EF=ED$
∴$CE$垂直平分$DF$,即$∠CMD= 90°$,$FM = DM$
∴$∠CDN +∠DCE = 90°$,即$ ∠ADN = ∠DCE$
∴$△ADN≌△DCE(\mathrm {ASA})$
$(2)$解:$①$由$(1)$,得$∠BCD=90°$,$CD=BC$,$CD= CF$
∴$∠CDF = ∠CFD$,$BC = CF$,即$∠CBF= ∠CFB$
∴$∠CFB +∠CFD =∠CBF + ∠CDF$
又$ ∠CBF + ∠CFB +∠CFD+∠CDF+∠BCD=360°$,
$∠CFB+∠CFD=∠BFD$
∴$∠BFD=\frac {1}{2}(360°-∠BCD)=135°$
又$∠BFD+∠HFB=180°$,∴$∠HFB=180°-∠BFD=45°$
又$AH//BF$,∴$∠AHF=∠HFB=45°$
$②A H= \sqrt {2}FM$