$解:连接AO并延长交\odot O于点F,连接BC、BF、DF、AD$
$∵AF是直径$
$∴∠ADF=90°,∠ABF=90°,AB⊥BF$
$∵AB⊥CD$
$∴BF//CD$
$∴\widehat{BC}=\widehat{DF}$
$∴BC=DF$
$在Rt△AED、Rt△BCE、Rt△ADF中$
$AE^2+DE^2=AD^2,CE^2+BE^2=BC^2=DF^2,AD^2+DF^2=AF^2$
$∴AE^2+BE^2+CE^2+DE^2=AD^2+DF^2=AF^2$
$∵AF是直径$
$∴AF=2,AF^2=4$
$∴AE^2+BE^2+CE^2+DE^2=4$