$证明:y=x^2+ax+a-2=(x+\frac {a}2)^2-\frac {a^2}4+a-2$
$∴函数图像的顶点是(-\frac {a}2,-\frac {a^2}4+a-2)$
$-\frac {a^2}4+a-2=-(\frac {a}2-1)^2-1$
$∵不论a取何值,总有-(\frac a{2}-1)^2≤0$
$∴-(\frac {a}2-1)^2-1<0,即-\frac {a^2}4+a-2<0$
$∴不论a取何值,函数图像顶点总在x轴的下方$