$解:(1)①∠CPB=180°-90°-∠EPD=90°-∠EPD=∠DEP$
$又∠D=∠C=90°$
$∴△BPC∽△PED$
$②∠BPC=90°-∠CPE=∠PEC,∠BCP=∠PCE=90°$
$∴△BPC∽△PEC或△BEP∽△BPC$
$③∠BPC=90°-∠PBC=∠EBP,∠C=∠EPB=90°$
$∴△BPC∽△EBP$
$(2)①\frac {PD}{BC}=\frac 12$
$∴△PED与△BPC的周长比是\frac 12$
$②\frac {PC}{DC}=\frac 12$
$∴△PEC与△BPC的周长比是\frac 12$
$△BEP与△BPC的周长比是\frac {\sqrt 5}2$
$③BP=\sqrt {BC^2+PC^2}=\sqrt 5PC,\frac {BP}{PC}=\frac {\sqrt 5}1$
$∴△EBP与△BPC的周长的比是\frac {\sqrt 5}1$