$解:(1) ∵\ \mathrm {m^2}-m-1=0$
$∴\ \mathrm {m^2}=m+1$
$∴ 2\ \mathrm {m^3}-3\ \mathrm {m^2}-m+9=2m · (m+1)-3\ \mathrm {m^2}-m+9=2\ \mathrm {m^2}+2m-3\ \mathrm {m^2}-m+9\ $
$=-\ \mathrm {m^2}+m+9=-(m+1)+m+9=-m-1+m+9=8$
$∴ 2\ \mathrm {m^3}-3\ \mathrm {m^2}-m+9 的值为8\ $
$(2) \frac {a^2+b^2}{2}-ab=\frac {(a+b)^2-2ab}{2} -ab=\frac {(a+b)^2}{2} -ab-ab=\frac {(a+b)^2}{2} -2ab$
$∵ a^2b^2=4$
$∴ ab=±2$
$① 当a+b=8,ab=2时,原式=\frac {(a+b)^2}{2} -2ab=\frac {8^2}{2} -2×2=28;$
$②当a+b=8,ab=-2时,原式=\frac {(a+b)^2}{2}-2ab= \frac {8^2}{2} -2×(-2)=36$
$综上所述,\frac {a^2+b^2}{2}-ab的值为28或36$