$ 解:(1)原式=x³+x²-\frac {1}{3}nx-3mx²-3mx+mn$
$=x³+(1-3m)x²-(\frac {1}{3}n+3m)x+mn$
$结果不含x²与x项,则1-3m=0,\frac {1}{3}n+3m=0$
$解得:m=\frac {1}{3},n=-3$
$(2)原式=(3m-n)²+(\mathrm {mn})^{100}·n$
$=[3×\frac {1}{3}-(-3)]²+(-1)^{100}·(-3)$
$=16-3$
$=13$